

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 1

A Rapidsoft Systems’ White Paper

© April, 2010

iPhone Development: Porting Java Script Web Applications
to Apple's iPhone

Summary:

iPhone has revolutionized the mobile world like no other product did before. iPhone touch screen
clearly was a generation ahead, and Apple's marketing as always was flawless - but there was
something more to this success. iTune made is easy for the application to be distributed. But what
made iPhone hit with developers were two reasons: excellent adaptability of device and ease of
programming the application on the device. This white paper presents the case study of creating an
iPhone application for a famous Hollywood movie. This application was developed by Rapidsoft Systems'
development team in record time to coincide with the release of the movie in the theaters in the US.

© All rights reserved. Rapidsoft Systems, Inc.

Introduction

iPhone has revolutionized the mobile world like no other product did before. iPhone touch screen
clearly was a generation ahead, and Apple's marketing as always was flawless - but there was
something more to this success. iTune made is easy for the application to be distributed. But what
made iPhone hit with developers were two reasons: excellent adaptability of device and ease of
programming the application on the device.

iPhone liberated the mobile phone UI, expanding its capabilities beyond that of a keypad and function
buttons. Besides these changes, iPhone changed the rules for writing mobile solutions in one important
way. It was the first phone with full featured browser. iPhone's Mobile Safari browser is a fully featured
web browser. Its ability to view many Internet web pages and execute their scripts opens the possibility
that the iPhone can handle certain corporate web-based applications. In this white paper, we will
examine the iPhone's web capabilities by porting a java script flash based web site application to iPhone.

When iPhone was first pitched as a web-application platform, many developers rushed to write native
iPhone applications. The phone runs a stripped-down version of Mac OS X, after all. Now that we have

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 2

worked for a number of years - it is obvious that iPhone can serve a useful platform for all kinds of web
applications.

Case Study of A Web Application

In the beginning of this year, our team at Rapidsoft System's Mobile Unit got approached by a customer
to develop a flash based site to adapt for iPhone. Well, this site turned out nothing but the site for the
big Hollywood movie tooth fairy. Now, the studio has already done its glossy Flash based site - but they
come to us for developing iPhone based mobile site. The next paragraph describes the movie's theme
(not that it is very important for this casestudy.)

"The Tooth Fairy," also known as Derek Thompson, is a hard-charging hockey player whose
nickname comes from his habit of separating opposing players from their bicuspids. When
Derek discourages a youngster's dreams, he's sentenced to one week's hard labor as a real
tooth fairy, complete with the requisite tutu, wings and magic wand. At first, Derek "can't
handle the tooth" - bumbling and stumbling as he tries to furtively wing his way through
strangers' homes-doing what tooth fairies do. But as Derek slowly adapts to his new
position, he begins to rediscover his own forgotten dreams.

The challenge was to transfer the full functionality site to an equally functional Web Application.

Fig 1: Tooth Fairy Site Being loaded

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 3

Fig 2: The Second View of the Original Movie Application

Mobile Safari Overview and Behavior

First, important thing of iPhone application is to get the terms right. Apple calls an appropriately
designed web page for an iPhone an "iPhone application. We are continue to follow this approach since
these applications need to be integrated in the iPhone's look-and-feel.

Mobile Safari brings lots of features to the table for developers. It uses the same WebKit rendering
engine that the desktop version of Safari uses. It's also compliant with a number of the latest web
standards: HTML 4.01, XHTML 1.0, CSS 2.1 and partial CSS 3, Document Object Model (DOM) 2, and
ECMAScript 3, a Javascript standard. Mobile Safari also supports the AJAX XMLHTTPRequest remote
scripting object. These features let the browser render most web pages accurately and manage
interactive script sessions.

You probably noticed the word "most" in that last sentence. It's there for a reason. Mobile Safari doesn't
support Java applets, nor (at this time) does it handle Flash content. The browser is unaware of the
phone's file system, so there's no downloading of plugins or other files. However, it does support
cookies.

Another difference is that in Mobile Safari, certain browser events have changed or have disappeared in
order to support Apple's gestures interface. For example, scrolling through a web page's content by use
of a finger flick requires that the iPhone's gesture interface capture and consume events that might
normally be construed as mouse events. Most mouseover events, if they appear in the browser at all,
are now mapped to mousedown events. For the same reasons, the hover style is gone. If your web page

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 4

uses mouseover events to implement menu choices, you need to rework the Javascript handlers to
respond to mousedown events or to clickable elements instead. On the positive side, the form and
document elements produce the usual onblur, onchange, and onfocus events.

Finally, Apple's human interface guidelines dictate that iPhone web pages should be small, and focused
on doing one thing very well. There are valid reasons for this:

 The iPhone has a small screen. Cluttering it up with multiple windows or controls makes the web
page's functions difficult to intuit or access. Nor does Mobile Safari support multiple windows,
other than the temporary display of alert or dialog boxes over the main page.

 The network interface can vary in throughput. As the iPhone user interacts with your web page,
the connection speed to the host can vary as the device moves between WiFi, 3G, and 2.5G
wireless networks. Therefore, you must assume the worst-case scenario and design the page for
the slowest network. Smaller pages load faster on slow networks, but this also limits the pages
as to what they can do.

 The iPhone has constrained RAM and processing throughput. Therefore, Mobile Safari can't
execute web pages with complex scripts. To appreciate this problem, point Mobile Safari to a
heavily scripted web-based e-mail service and watch it take the page several minutes to render
and respond. There's a reason the iPhone comes with its own native e-mail application.

In short, the iPhone's small screen, varying network speeds, and limited processing throughput dictates
that you keep your web pages small and simple. You can link to other, separate pages, but they should
also follow these guidelines. Lengthy page loads and with sluggish responses are only going to frustrate
users so that they don't use your web application.

Design Considerations

The original ToothFairy web page (www.toothfairy-movie.com) is a full functional flash based site. The
site is shown in Figure 1. It makes heavy use of flash elements. The challenge was to transfer the same
elements into an iPhone application. As you can see the layout of the web page's elements were made
for a large laptop screen, and not for a mobile phone. The iPhone has a 320×480-pixel screen, which is
large by mobile phone standards, but still much smaller than a desktop or a laptop screen. Rather than
try to pack everything onto the small screen, it meant that we needed to make some important decision
about the layout without losing the vitality and interactive features of the main site.

Framework Features

The iUI framework consists of a mixture of CSS styles and Javascript functions. These provide a set of
style selectors that you apply to your page's HTML elements. The framework then uses Javascript to
manipulate the page's document tree to modify its look. The appearance and behavior of these
modified elements mimics that of the iPhone UI. For example, an ordered list of hyperlinks becomes the
familiar iPhone list with arrows used to jump to other pages of a program.

There are style selectors for setting up a navigation bar, lists, and hyperlinked lists of information. Other
styles help construct panels that contain controls, display information, or provide buttons.

Other iUI features that assist you with writing iPhone web pages are:

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 5

 Visual feedback. Some elements flash briefly with the same blue color as the iPhone UI, thus
verifying that the element has responded to the user's tap.

 Conserve screen space. At the top of an iPhone web page is a bar that displays the page's URL.
This URL text field bar consumes a precious 60 pixels of vertical screen real estate. You can
temporarily hide the URL by invoking this code:

 <body onload="setTimeout(function() { window.scrollTo(0, 1) },

100);"></body>

 This lets you recover those 60 pixels. iUI calls this code for you automatically.
 Handles changes in screen orientation. If the user flips the iPhone on its side, this action

generates a change in orientation event that iUI responds to by re-rendering the web page with
the new screen dimensions.

To use iUI, you reference its CSS styles file (iui.css), and Javascript functions file (iui.js) inside your web
page's header, bracketed by the appropriate <javascript> and <style> tags.

To recap, you write your iPhone page using HTML elements and tag them with iUI styles. After you put
the interface together, you then write your own Javascript functions that carry out the page's intent.
When the page executes on the iPhone, it looks and behaves like an iPhone app, thanks to the iUI
framework.

Writing and Testing Code

Because iPhone web pages render in a browser, you can use a standards-compliant desktop desktop
browser such as FireFox 3.x, Safari 3.x, or Opera 9.x to write and test a page's code. The iUI framework
makes the web page resemble an iPhone screen even on the PC, so you can also work the kinks out of
your web page's layout before it is ever loaded onto an iPhone. Because IE 6 and 7 don't support many
of the standard CSS selectors, iPhone web pages won't render properly in this browser. Simply put, don't
use IE.

We started our code port using FireFox 3 along with Aptana's Firebug to help debug the Javascript
functions. While browsers are quite robust in rendering HTML with unbalanced or mangled tags, for a
Javascript error they simply abort and don't render the page, a behavior that can drive you mad. Firebug
is really good at catching Javascript errors, ranging from the simple typo to a reference to an object that
doesn't exist, something that can easily happen you're figuring out how to access objects on the
document tree. You can step through the code and watch variable values change as the Javascript
executes, which is a good way of confirming that the code really works, rather than it just happens to
work.

We were able to get a list display working quickly by using the toolbar style and writing a main list with
the and tags. Although this was only a proof-of-concept program, I then reworked the code so
that Javascript built the list dynamically, using a for loop for this purpose. I wanted to see if iUI was
capable of handling a dynamically changing list, and the framework passed the test.

Testing Application With Mobile Safari

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 6

Once we got the web page working reliably on both the FireFox and Safari desktop browsers, it was time
to try the web page where it really counted: Mobile Safari on the iPhone. We placed the program on a
web site, downloaded it to the iPhone, and tapped away at the screen. We noticed that what worked
fine on the desktop suddenly became misaligned on the phone. We tried several new changes to the css
to align but one or the elements will misalign. After a few css, we decides to make some changes to
javascript and with some more testing we were able to get it right.

Figure 3: The Final Web Application on the iPhone as tested by Rapidsoft System's Team

Better Browsing on Mobile

The partial port of the ToothFairy web page shows that it's not difficult to move a subset of a company's
web-based applications onto the iPhone. We were able to locate and use an off-the-shelf framework
and custom Javascript software to impart an iPhone look and feel to the SR web page. Apple's iPhone
has raised the bar on what's acceptable for a smartphone browser. Mobile users will demand that their
browsers be fully capable of viewing the web—albeit painfully slow at times—and executing light-weight
web applications. Over time, the performance of both the platform and Javascript will improve; thereby
expanding what a mobile phone is capable of doing for us. It should come as no surprise that Apple's
added SquirrelFish, a high-speed Javascript interpreter, to the WebKit rendering engine.

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 7

You can expect other smartphone vendors to improve the capabilities of their browsers as fast as they
can. When that happens, then we'll run web apps on any phone that we choose. That's an outcome that
will be good for all of us.

Steps to Writing an iPhone Web Page

1. Prototype and write the page's code on a standards-compliant desktop browser, such as FireFox 3 or
Opera 9.x I prefer FireFox because then I can apply Aptana's Firebug to debug the Javascript. Note that
for these two browsers that iUI's buttons don't render well, but it's good enough for code testing.

2. If you haven't already, modify the application's interfaces so that they don't use mouseover events.

3. Test and fix the page with the desktop version of Safari 3.x. The iUI buttons render fine on this
browser. Clean up any quirks with events or side-effects to CSS selectors.

4. Do final test and revisions on the iPhone. Be prepared for another round of fixes for quirks and CSS
side-effects. Also, you may have to tweak the interface for the small screen. Don't forget to re-orient the
phone and verify that you haven't hard-coded the screen positions of any of the application's elements
or controls!

Conclusions

Rapisoft System's expert mobile and Web development team was able to develop this application in the
record time. We were under pressure to produce this application in the record time of three weeks to
align with the release of Movie in the theaters. However, team did it even better and produced this
application in just two weeks. To achieve, this we had to align resources from the web as well as our
mobile development team. The important lesson of this migration is that one should do proper planning
for iPhone applications since the browser compatibility is still not as good as between desktop browsers.

By following the above common sense approach to software outsourcing, you can truly benefit from the
lower cost of offshore outsourcing. The main points are using only professionally run companies that
demonstrate a level of professionalism and are willing to provide access to their engineering teams.
Besides, your ability to openly communicate can make or break a project therefore having a local project
man

ager for your project with whom you can deal with on daily or weekly basis is very important.

We hope the above article helps if you are looking to outsource any software development. And, if you
would like to talk to us - you can visit us at http://www.rapidsoftsystems.com/. We promise to give you
no obligation help whether you use us or not for your next software project.

http://www.rapidsoftsystems.com/

R a p i d s o f t S y s t e m s I n c . © 2 0 1 0

Page 8

For more information and specific questions, please contact us at:

Rapidsoft Systems, Inc,

 Mailing Address: 7 Diamond Court, Princeton Junction,
 New Jersey 08550, USA

(Princeton) New Jersey, (San Jose) California, Noida (india), Delhi/ Gurgaon (India), Mumbai
(India), Chennai (India)

Web: www.rapidsoftsystems.com

Phones: 1-609-439 4775 / 1-609-439-9060 (US East Coast, NJ Office)
 1-408-829-6284/ 1-408-890-2509 (US West Coast, San Jose Office)
 Fax: 1-831-855-9743

Email: info@rapidsoftsystems.com

mailto:info@rapidsoftsystems.com

